NIPS 2011 Big Learning - Algorithms, Systems, & Tools Workshop: Hazy - Making Data-driven...

NIPS 2011 Big Learning - Algorithms, Systems, & Tools Workshop: Hazy - Making Data-driven... Video Clips. Duration : 54.98 Mins.


Big Learning Workshop: Algorithms, Systems, and Tools for Learning at Scale at NIPS 2011 Invited Talk: Hazy: Making Data-driven Statistical Applications Easier to build and Maintain by Chris Re Christopher (Chris) RĂ© is currently an assistant professor in the department of Computer Sciences at the University of Wisconsin-Madison. The goal of his work is to enable users and developers to build applications that more deeply understand data. In many applications, machines can only understand the meaning of data statistically, eg, user-generated text or data from sensors. Abstract: The main question driving my group's research is: how does one deploy statistical data-analysis tools to enhance data driven systems? Our goal is to find abstractions that one needs to deploy and maintain such systems. In this talk, I describe my group's attack on this question by building a diverse set of statistical-based data-driven applications: a system whose goal is to read the Web and answer complex questions, a muon detector in collaboration with a neutrino telescope called IceCube, and a social-science applications involving rich content (OCR and speech data). Even in this diverse set, my group has found common abstractions that we are exploiting to build and to maintain systems. Of particular relevance to this workshop is that I have heard of applications in each of these domains referred to as "big data." Nevertheless, in our experience in each of these tasks, after appropriate ...

0 comments:

Post a Comment